
Preprint
UCRL- JC-146802

Chromium: A Stream-
Processing Framework for
Interactive Rendering on
Clusters

G. Humphreys, M. Houston, V.-R. Ng, R. Frank, S. Ahern,
P, Kirchner, J. Kloso wski

This article was submitted to
Siggraph 2002, San Antonio, TX, July 21 -26, 2002

U.S. Department of Energy

Lab oratory

January 11 2002

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at htb: / /www.doc.vov/b-

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reDorts@adonis .ostl.g2y

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
SprinGeld, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail. -tis .fedworld.Pov
Online ordering: btb: / /www.ntis.vov/orderinm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/ tid/Library.html

http://www.llnl.gov

Chromium: A Stream-Processing Framework for Interactive Rendering on Clusters
Category: System (Paper ID: 60)

Abstract

We describe Chromium, a system for manipulating streams of
graphics API commands on clusters of workstations. Chromium’s
stream filters can be arranged to create sort-first and sort-last par-
allel graphics architectures that, in many cases, support the same
applications while using only commodity graphics accelerators. In
addition, these stream filters can be extended programmatically, al-
lowing the user to customize the stream transformations performed
by nodes in a cluster. Because our stream processing mechanism
is completely general, any cluster-parallel rendering algorithm can
be either implemented on top of or embedded in Chromium. In
this paper, we give examples of real-world applications that use
Chromium to achieve good scalability on clusters of workstations,
and describe other potential uses of this stream processing tech-
nology. By completely abstracting the underlying graphics archi-
tecture, network topology, and API command processing seman-
tics, we allow a variety of applications to run in different environ-
ments.
CR Categories: 1.3.2 [Computer Graphics]: Graphics Systems-
Distributdnetwork graphics; 1.3.4 [Computer Graphics]: Graph-
ics Utilities-Software support, Virtual device interfaces; C.2.2
[Computer-Communication Networks]: Network Protocols-
Applications; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems-Client/Server, Distributed Applications
Keywords: Scalable Rendering, Cluster Rendering, Parallel Ren-
dering, Tiled Displays, Remote Graphics, V i 1 Graphics, Stream
Processing

1 Introduction

The performance of consumer graphics hardware is increasing at
such a fast pace that a large class of applications can no longer
utilize the full computational potential of the graphics processor.
This is largely due to the slow serial interface between the host and
the graphics subsystem. Recently, clusters of workstations have
emerged as a viable option to alleviate this bottleneck. However,
cluster rendering systems have largely been focused on providing
specific algorithms, rather than a general mechanism for enabling
interactive graphics on clusters. The goal of our work is to allow
applications to more easily utilize the aggregate rendering power of
a collection of commodity graphics accelerators housed in a cluster
of workstations, without imposing a specific scalability algorithm
that may not meet an application’s needs.

To achieve this goal, we have designed and built a system that
provides a generic mechanism for manipulating streams of graph-

ics API commands. This system, called Chromium, can be used
as the underlying mechanism for any existing cluster-graphics al-
gorithm by having the algorithm use OpenGL to move geometry
and imagery across a network as required. In addition, existing
OpenGL applications can use a cluster with very few modifications,
because Chromium provides an industry-standard graphics API that
virtualizes the disjoint rendering resources present in a cluster. In
some cases, the application does not even need to be recompiled.
Compatibility with existing applications may accelerate the adop-
tion of rendering clusters and high resolution displays, encouraging
the development of new applications that exploit resolution and par-
allelism.

Chromium’s stream processors are implemented as modules that
can be interchanged and combined in an almost completely arbi-
trary way. By modifying the configuration of these stream pro-
cessors, we have built sort-first and sort-last parallel graphics ar-
chitectures that can, in many cases, support the same applications
without recompilation. Unlike previous work, our approach does
not necessarily require that any geometry be moved across a net-
work (although this may be desirable for load-balancing reasons).
Instead, applications can issue commands directly to locally housed
graphics hardware, thereby achieving the node’s full advertised ren-
dering performance. Because our focus is on clusters of commod-
ity components, we only consider architectures that do not require
communication between stages in the pipeline that are not normally
exposed to an application. For example, a sort-middle architecture,
which requires communication between the geometry and rasteri-
zation stages, is not a good match for our system.

Chromium’s stream processors can be extended programmati-
cally. This added flexibility allows Chromium users to solve more
general problems than just scalability, such as integration with an
existing user interface, stylized drawing, or application debugging.
This extensibility is one of Chromium’s key strengths. Because we
simply provide a programmable filter mechanism for graphics API
calls, Chromium can implement many different underlying algo-
rithms. This model can be thought of as an extension of Voorhies’s
virtual graphics pipeline [34], which insulates applications from the
details of the underlying implementations of a common API.

2 Background and Related Work

2.1 Cluster Graphics
Clusters have long been used for parallelizing traditionally non-
interactive graphics tasks such as ray-tracing, radiosity [5,26], and
volume rendering [6]. Other cluster-parallel rendering efforts have
largely concentrated on exploiting inter-frame parallelism rather
than trying to make each individual frame run faster [21]. We are in-
terested in enabling fast, interactive rendering on clusters, so these
techniques tend to be at most loosely applicable to our domain.

In the last few years, there has been growing interest in using
clusters for interactive rendering tasks. Initially, the goal of these
systems was to drive large tiled displays. Humphreys and Hanrahan
described an early system designed for 3D graphics [9]. Although
the system described in that paper ran on an SGI InfiniteReality, it
was later ported to a cluster of workstations. At first, their cluster-
based system, called WireGL, only allowed a single serial applica-
tion to drive a tiled display over a network [7]. WireGL used tra-
ditional sort-first parallel rendering techniques to achieve scalable

.
Paper #60 - Chromium: A Sham Processing Framework for Interactive Rendering on Clusters

display size with minimal impact on the application’s performance.
The main drawback of this system was its poor utilization of the
graphics resources available in a cluster. Because it only focused on
display resolution, applications would rarely run faster on a cluster
than they would locally.

Other approaches focused on scalable rendering rates. Samanta
et al. described a cost-based model for load-balancing rendering
tasks among nodes in a cluster, eventually redistributing the re-
sulting non-overlapping pixel-tiles to drive a tiled display [30,32].
They then extended this technique to allow for tile overlap, creat-
ing a hybrid sort-first and sort-last algorithm that could effectively
drive a single display [31]. All of these algorithms required the
full replication of the scene database on each node in the cluster,
so further work was done to only require partial replication, trad-
ing off memory usage for efficiency [29]. Although these papers
present an excellent study of differing data-management strategies
in a clustered environment, they all provide algorithms rather than
mechanisms. Applying one of these techniques to a big-data visu-
alization problem would require significant reworking of existing
software.

A different approach to dataset scalability was taken by
Humphrcys et al. when they integrated a parallel interface into
WireGL [8]. By posing as the system’s OpenGL driver, WireGL
intercepts OpenGL commands made by an application (or multi-
ple applications), and generates multiple new command sequences,
each represented in a compact wire protocol. Each sequence is then
transmitted over a network to a different server. Those servers man-
age image tiles, and execute the commands encoded in the streams
on behalf of the client. Finally, the resulting framebuffer tiles are
extracted and transmitted to a compositing server for display. Or-
dering between streams resulting from a parallel application is con-
trolled using the parallel immediate mode graphics extensions pro-
posed by Igehy et al [lo]. WireGL can use either software-based
image reassembly or custom hardware such as Lightning-2 [33] to
reassemble the resulting image tiles and form the final output. This
approach to cluster rendering allows existing applications to be par-
allelized easily, since it is built upon a popular, industry-standard
API. However, by imposing a sort-first architecture on the resulting
application, it can be difficult to load-balance the graphics work.
Load-balancing is usually attempted by using smaller tiles, but this
will tend to cause primitives to overlap more tiles, resulting in ad-
ditional load on the network and reduced scalability. More funda-
mentally, WireGL requires that all geometry be moved over a net-
work every frame, but today’s networks are not fast enough to keep
remote graphics cards busy.

2.2 Stream Processing

Continual growth in typical dataset size and network bandwidth has
made strcam-based analysis a hot topic for many different disci-
plines, such as telephone record analysis [4], multimedia, render-
ing of remotely stored 3D models 1281, database queries [2], and
theoretical computer science [17]. In these domains, streams are an
appropriate computational primitive because large amounts of data
arrive continuously, and it is impractical or unnecessary to retain
the entire data set. In the broadest sense, a stream is an ordered
sequence of records. Applications designed to operate on streams
only access the elements of the sequence in order, although it is pos-
sible to buffer a potion of a stream for more global analysis. Any
stream processing algorithm must operate on a potentially infinite
input set using only finite resources.

Many of the traditional techniques used to solve problems in
computer graphics can be thought of as stream processing algo-
rithms. Immediate-mode rendering is a classic example. In this
graphics model, an unbounded sequence of primitives is sent one at
a time through a narrow API. The graphics system processes each

primitive in turn, using only a finite framebuffer (and possibly tex-
ture memory) to store any necessary intermediate results. Because
such a graphics system does not have memory of past primitives,
its computational expressiveness is limited*. Owens et al. imple-
mented an OpenGL-based polygon renderer on Imagine, a pro-
grammable stream processor [l8]. Using Imagine, they achieved
performance that is competitive with custom hardware while en-
abling greater programmability at each stage in the pipeline.

Mohr and Gleicher demonstrated that a variety of stylized draw-
ing techniques could be applied to an unmodified OpenGL applica-
tion by only analyzing and modifying the stream of commands [15].
They intercept the application’s MI commands by posing as the
system’s OpenGL driver, in exactly the same way Chromium ob-
tains its command source. Although some of their techniques re-
quire potentially unbounded memory, some similar effects can be
achieved using chromium and multiple nodes in a cluster.

3 System Architecture

The overall design of Chromium was influenced by Stanford’s
WireGL system [SI. Although the sort-first architecture imple-
mented by WireGL is fairly restrictive, one critical aspect of the
design led directly to Chromium: The wire protocol used to move
image tiles from the servers to the compositor is the same as
the networked-OpenGL protocol used to move geometry from the
clients to the servers. In effect, WireGL’s servers themselves be-
come clients of a second parallel rendering application, which uses
imagery as its fundamental drawing primitive. This means that the
compositing node is not special; in fact, it is just another instance
of the same network server executing OpenGL commands and re-
solving ordering constraints on behalf of some parallel client.

If we consider a sequence of OpenGL commands to be a stream,
WireGL provides three main stream “filters”. First, it can sort a
serial stream into tiles. Next, it can dispatch a stream to a local im-
plementation of OpenGL. Finally, W M L can read back a frame-
buffer and generate a new stream of imagedrawing commands. In
WireGL, these stream transformations can only be realized at spe-
cific nodes in the cluster (e.g., an application’s stream can only be
sorted). To arrive at Chromium’s design, we realized that it would
be useful to perform other transformations on MI streams, and it
would also be necessary to arrange cluster nodes in a more generic
topology than WireGL’s many-to-many-to-few arrangement.

3.1 Cluster Nodes

Chromium users begin by deciding which nodes in their cluster will
be involved in a given parallel rendering run, and what communi-
cation will be necessary. This is specified to a centralized configu-
ration system as a directed acyclic graph. Nodes in this graph rep-
resent computers in a cluster, while edges represent network traffic.
Each node is actually divided into two parts: a transformation por-
tion and a serialization potion.

The transformation portion of a node takes a single stream of
OpenGL commands as input, and produces zero or more streams
of OpenGL commands as output. The mapping from input to out-
put is completely arbitrary. The output streams (if any) are sent
over a network to another node in the cluster to be serialized and
transformed again. Stream transformations are described in greater
detail in section 3.2.

‘Because most graphics MI’S have some mechanism to force data to
flow back towards the host (i.e., glReadPixels), graphics hardware is actu-
ally not a purely feed-forward stream processor. This fact has been exploited
to perform more general computation using graphics hardware [19,23], and
extensions to the graphics pipeline have been proposed to further generalize
its computational expressiveness [13].

2

Paper #60 - chromium: A S h a m Processing Framework for Interactive Rendering on Clusters

Application

lwe6ut

The serialization portion of a node consumes one or more in-
dependent OpenGL streams, each with its own associated graph-
ics context, and produces a single OpenGL stream as output. This
task is analogous to the scheduler in a multitasking operating sys-
tem; the serializer chooses a stream to “execute”, and copies that
stream to its output until the stream becomes “blocked”. It then se-
lects another input stream, performs a context switch, and continues
copying. Streams block and unblock via extensions to the OpenGL
API that provide barriers and semaphores, as proposed by Igehy et
a1 [lo]. These synchronization primitives do not block the issuing
process, but rather encode ordering constraints that will be enforced
by the serializer. Because the serializer may have to switch be-
tween contexts very frequently, we use a hierarchical OpenGL state
tracker similar to the one described by Buck et a1 [3]. This state
representation allows for the efficient computation of the difference
between two graphics contexts, allowing for fine-grained sharing of
rendering resources.

A node’s serializer can be implemented in one of two ways.
Graph nodes that have one or more incoming edges are realized
by Chromium’s network server, and are referred to as server nodes.
Servers manage multiple incoming network connections, interpret-
ing messages on those connections as packed representations of
OpenGL streams.

On the other hand, nodes that have no incoming edges must
generate their (already serial) OpenGL streams programmati-
cally. These nodes are called client nodes. Clients obtain their
streams from standalone applications that use the OpenGL API.
Chromium’s application launcher causes these programs to load our
OpcnGL shared library on startup. Chromium’s OpenGL library
injects the application’s commands into the node’s stream trans-
former, so the application does not have to be modified to initialize
or load Chromium. If there is only one client in the graph, it will
typically be an unmodified off-the-shelf OpenGL application. For
graphs with multiple clients, the applications will have to specify
the ordering constraints on their respective streams.

a .
a

3.2 OpenGL Stream Processing

Stream transformations are performed by OpenGL “Stream Pro-
cessing Units”, or SPUs. SPUs are implemented as dynamically
loadable libraries that provide the OpcnGL interface, so each node’s
serializer will load the required libraries at run time and build an
OpenGL dispatch table. SPUs are normally designed as generically
as possible so they can be used anywhere in a graph.

A simple example configuration is shown in figure 1. The client
loads the t i l e s o r t SPU, which incoprates all of the sort-first
stream processing logic from WireGL. The servers use the render
SPU, which dispatches the incoming streams directly to their local
graphics accelerators. This configuration has the effect of running
the unmodified client application on a tiled display using sort-first
stream processing, giving identical semantics and similar perfor-
mance to the tiled display system described by Humphreys et a1 [7].
Notice that in figure 1, the graph edges originate from the t i l e s o r t
SPU, not the application itself. This convention is used because the
SPU in fact manages its own network resources, originates connec-
tions to servers, and generates traffic.

3.3 SPU Chains

A node’s stream transformation need not be performed by only a
single SPU; serializers can load a linear chain of SPUs at run time.
During initialization, each SPU receives an OpenGL dispatch table
for the next SPU in its local chain, meaning simple SPUs can be
chained together to achieve more complex results. Using this fea-
ture, a SPU might intercept and modify (or discard) calls to one par-
ticular OpenGL function and pass the rest untouched to its down-

I - I

Figure 1: A simple Chromium configuration. In this example,
a serial application is made to run on a tiled display using a
sort-first stream processor called t i l e s o r t .

stream SPU. This allows a SPU, for example, to adjust the graphics
state slightly to achieve a different rendering style.

One example of such a SPU is a “wireframe style” filter. This
SPU issues a glPolygonMode call to its downstream SPU at startup
to set the drawing mode to wireframe. It then passes all OpenGL
calls directly through except glPolygonMode, which it discards,
preventing the application from resetting the drawing mode. Note
that Chromium does not require a stream to be rendered on a dif-
ferent node from where it originated, it is straightforward for the
client to load the render SPU as part of its chain. In this way, an
application’s drawing style can be modified while it runs directly
on the node’s graphics hardware, without any network traffic.

SPU chains are always initialized in back-to-front order, starting
with the final SPU in the chain. At initialization, a SPU must return
a list of all the functions that it implements. A SPU that wants to
pass a function call through to the SPU immediately downstream
can return the downstream SPU’s function pointer as its own. Be-
cause there is no indirection in this model, passing OpenGL calls
through multiple SPUs does not incur any performance overhead.
Such function pointer copying is common in Chromium; as long as
SPUs copy and change OpenGL function tables using only our pro-
vided API’s, they can change their own exported interface on the fly
and automatically propagate those changes throughout the node.

3.4 SPU Inheritance

A SPU need not export a complete OpenGL interface. Instead,
SPUs benefit from a single-inheritance model in which any func-
tions not implemented by a SPU can be obtained from a “parent”,
or ‘‘super” SPU. The SPU most commonly inherited from is the
passthrough SPU, which passes all of its calls to the next SPU in
its node’s chain. The wireframe drawing SPU mentioned in the pre-
vious section would likely be implemented this way-it would im-
plement only glPolygonMode, and rely on the passthrough SPU
to handle all other OpenGL functions. At initialization, each SPU
is given a dispatch table for its parent. For example, when the wire-
frame SPU wishes to set the drawing mode to wireframe during

3

Paper #60 - Chromium: A Stream Processing Framework for Interactive Rendering on Clusters

initialization, it calls the passthrough SPU’s implementation of
glPolygonMode.

3.5 Provided Tools and SPUs

Chromium provides four libraries that encapsulate frequently per-
formed stream operations. The first is a stream packing library. This
library takes a sequence of commands and produces a serialized en-
coding of the commands and their arguments. Although this library
is normally used to prepare commands for network transmission, it
can also be used to buffer a group of commands for later analysis,
as described in section 4.3. We use a very similar encoding method
to the one described by Buck et a1 [3]. It incurs almost no wasted
space, retains nahual argument alignment, and allows a group of
command “opcodes” and their arguments to be sent with a single
call to the networking library.

Second, we provide a stream unpacking library. This library de-
codes an already serialized representation of a sequence of com-
mands and dispatches those commands to a given SPU. This library
is primarily used by Chromium’s network server to handle incom-
ing network traffic, but it can also be used by SPUs that need to
locally buffer a portion of a stream in order to perform more global
analysis or make multiple passes over that portion.

The third is a point-to-point connection-based networking ab-
straction. This library abstracts the details of the underlying trans-
port mechanism from the caller; we have implemented this API on
top of TCPAP and Myrinet. In addition, the library can be used by
SPUs and applications to communicate with each other along chan-
nels other than those implied by the configuration graph described
in section 3.1. This out-of-band communication allows complex
compositing SPUs to be built, such as the one described in sec-
tion 4.1.

Finally, Chromium includes a complete OpenGL state tracker.
In addition to maintaining the entire OpenGL state, this library can
efficiently compute the difference between two graphics contexts,
generating a call to a given SPU for every discrepancy found. This
efficient context differencing operation is due to a hierarchical rep-
resentation described by Buck et a1 [3].

In addition to these support libraries, Chromium provides a num-
ber of SPUs that can be used as is or extended to realize the de-
sired stream transformation. Eleven of Chromium’s most useful
SPUs arc shown in table 1, and new specialized SPUs are frequently
added to the repository.

3.6 Realizing Parallel Rendering Architectures

We now present two examples of parallel rendering architectures
that can be realized using Chromium. As described by Molnar et
al., parallel rendering architectures can be classified according to
the point in the graphics pipeline at which data is “sorted” from an
object-parallel distribution to an image-parallel distribution [16].

The first configuration, shown in figure 2, shows a sort-first
graphics architecture that functions identically to WireGL. As in
figure 1, we use the t i l e s o r t SPU to sort the streams into tiles.
Each intermediate server serializes its incoming streams and passes
the result to the readback SPU. The readback SPU inherits from
the render SPU using the mechanism described in section 3.4, so
the streams are rendered on the locally housed graphics hardware.
However, the readback SPU provides its own implementation of
SwapBuf f ers, so at the end of the frame it extracts the framebuffer
and uses glDrawPixels to pass the pixel data to another SPU. In
the figure, each pixel array is passed to a send SPU, which trans-
mits the data to a final server for tile reassembly. Each readback
SPU is configured at startup to know where its tiles should end up
in the final display; these coordinates are passed to the send SPU
using glRasterPos. The readback SPU also uses Igehy’s parallel

Figure 2: Chromium configured as a complete WircGL re-
placement. A parallel application drives a tiled display using
the sort-first logic in the t i l e s o r t SPU. Imagery is then read
back from the servers managing those tiles and sent to a final
compositing server for display.

graphics synchronization extensions [IO] to ensure that the tiles all
arrive at their destination before the final rendering server displays
its results. This final tile reassembly step could also be performed
using custom hardware such as Lightning-2 [33].

A dramatically different architecture is shown in figure 3. In
this figure, the readback SPU is loaded directly by the applica-
tions. Recall that the readback SPU dispatches all of the OpenGL
API directly to the underlying graphics hardware, so the application
running in this configuration benefits from the 111 performance of
local 3D acceleration. In this case, the readback SPU is configured
to extract both the color and depth buffers, sending them both to a
final compositing server along with the appropriate OpcnGL com-
mands to perform a depth composite. In contrast to WireGL, this is
a sort-last architecture. In practice, having many full framebuffers
arriving at a single display server would be a severe bottleneck, so
this architecture is rarely used. In addition, when doing depth com-
positing in Chromium, it can be beneficial to write a special SPU
to perform the composite in software, because compositing depth
images in OpenGL requires using the stencil buffer in a way that is
quite slow on many architectures. A more advanced (and practical)
Chromium-based sort-last architecture is presented in section 4.1.

Because Chromium provides a virtual graphics pipeline with a
parallel i n t e h e , the parallel application in figure 3 could be run
unmodified on the sort-first architecture in figure 2 simply by speci-
fying a different configuration DAG. The architectures may provide
slightly different semantics (e.g., the sort-last architecture cannot
guarantee ordering constraints between the clients), but the appli-
cation need not be aware of the change.

4 Results

In this section, we present three different Chromium usage scenar-
ios: a parallel volume renderer used to interactively explore a large
volumetric dataset, the reintegration of an application’s graphics
stream into its original user interface on a high-resolution display

4

Paper #60 - Chromium: A Stmam Processing Framework for Interactive Rendering on Clusters

SPU Description
e r r o r Prints a fatal error when any OpenGL function is called. This SPU is implicitly the parent of any SPU

that does not specify otherwise. This way, SPUs that accidentally fail to implement a necessary function
will emit a meaninghl error message rather than crashing or *ling in other ways that can be difficult to
debug.
Measures the frame rate of the stream as it passes by. This is useful for measuring the performance at
various places in a communication graph without instrumenting each SPU separately.
Silently discards all OpcnGL calls, which can be a used to replace the render SPU to factor out rendering
time when measurina uerformance.

framerate

nop

passthrough Passes all functions to the next SPU in a node’s local chain. Many SPUs will inherit from the passthrough
SPU. allowinn them to modifi onlv a small subset of the entire ObenGL API.

~~

p r i n t

readback

Dumps a human-readable log of all OpenGL calls and their arguments to a file. SPU debugging often
involves liberal application of the p r i n t SPU and some post-processing of the resulting logs.
Transforms a stream of commands into a single image. The readback SPU can be configured to extract
color andlor depth, and also to include commands that position the resulting image at an arbitrary offset
using glRasterPos.
Passes all OpenGL calls directly to the graphics hardware, producing an image in a window. Typically the
render SPU is used at every node that does not generate any new streams.
Renders a stream and saves an image file for each h e . This can be used to make frame-by-frame movies
of any OpenGL application.

render

savef rame

send Transmits a serialized representation of the entire stream to a server. Functions that query the OpenGL
state or have a non-void return tme will require a round-trip message using this SPU.

t i l e s o r t
vertexarray

Sorts a single stream into tiles, and sends specialized streams to multiple servers managing those tiles.
Removes uses of OpenGL vertex arrays by converting those calls into sequences of standard OpcnGL
functions. This can be usefbl for SPUs that need to guarantee that the data provided to their functions will
persist over time.

Table 1 : SPUs provided by Chromium. These SPUs can be used by any node in a cluster, and can be extended and combined to perform
different stream transformations.

Chromium Server

Rrtdu

Figure 3: Another possible Chromium configuration. In this
example, nodes in a parallel application render their portion of
the scene directly to their local hardware. The color and depth
buffers arc then read back and transmitted to a final composit-
ing server, where they are combined to produce the final im-
age.

device, and a stream transformation to achieve a non-photorealistic
drawing style.

4.1 Parallel Volume Rendering

Our volume rendering application uses 3D textures to store vol-
umes and renders them with view-aligned slicing polygons, com-
posited from back to front. Using Stanford’s Real-Time Shading
Language [23], we can implement different classification and shad-
ing schemes using the latest programmable graphics hardware, such
as NVIDIA’s GeForce3. Small shaders can easily exhaust these
cards’ resources; for example, a shader that implements a simple
2D transfer function and a specular shading model requires two 3D
texture lookups, one 2D texture lookup (dependent on one of the
3D lookups), and all eight register combiners.

Because we store our volumes as textures, the maximum size of
the volume that can be rendered is limited by the amount of avail-
able texture memory. In practice, on a single GeForce3 with 64 MEI
of texture memory, the largest volume that can be rendered with the
shader described above is 2 5 6 x 2 5 6 ~ 128. In addition, the speed of
volume rendering with 3D textures is limited by the fill rate of our
graphics accelerator. While the theoretical fill rate of the GeForce3
is 800 Mpix/sec, complex fragment processing greatly decreases
the attainable performance. Depending on the complexity of the
shader being used, we achieve between 42 and 190 Mpix/sec, or
roughly 5% to 24% of the GeForce3’s theoretical peak fill rate.

Both of these limitations can be mitigated by parallelizing the
rendering across a cluster. We first divide the volume among the
nodes in our cluster. Each node renders its subvolume on locally
housed graphics hardware using the binaryswap SPU, which com-
posites the resulting framebuffers using the “binary swap” tech-
nique described by Ma et a1 [121. In this technique, rendering nodes

5

W '1

ntegratioi

-

I Chromium protocol

-- - Gigabit Ethernet

.

rnn

liddenline2

Readback I Sen

Readback I Sen

Render

Paper #60 - Chromium: A Stream Processing Framework for Interactive Rendering on Clusters

onal. Today’s time-varying volumetric datasets can easily exceed
30 terabytes in size. We intend to build a new parallel rendering
application designed specifically for interactively visualizing these
datasets on a cluster, using Chromium as the underlying transport,
rendering, and cornpositing mechanism.

We would also like to explore the possibilities afforded by
non-invasive analysis of graphics API streams. It has already
been shown that some non-photorealistic rendering styles can be
achieved this way; we intend to apply stream transformations and
analysis to other domains. One possibility is the automatic real-
time generation of cutaway and exploded views of objects. We be-
lieve that by allowing such views, we can greatly enhance a user’s
ability to understand and visualize complex 3D spatial relationships
between objects. Furthermore, graphics stream manipulation need
not be restricted to new drawing styles. By visualizing the graphics
state itself alongside a running program and its source code, an ex-
tremely use l l debugging tool could be created. Such a tool could
attempt to automatically answer one of the most challenging ques-
tions in computer graphics: “Why is my window black?”. Tools
that analyze the graphics stream rather than modi@ it could also be
used for on-the-fly performance analysis.

Most of all, we hope that Chromium will be adopted as a com-
mon low-level mechanism for enabling new graphics algorithms,
particularly for clusters. If this happens, research results in cluster
graphics can more easily be applied to existing problems outside the
original researcher’s lab. Chromium is a completely open-source
project that supports both Microsoft Windows and several variants
of UNIX.

6 Conclusions

We have described Chromium, a flexible framework for manipulat-
ing streams of graphics API commands on clusters of workstations.
Chromium’s stream processors can be configured to provide a sort-
first parallel rendering architecture with a parallel interface, or a
sort-last architecture capable of handling most of the same appli-
cations. Chromium’s flexibility makes it an ideal launching point
for new research in parallel rendering systems, particularly those
that target clusters of commodity hardware. In addition, it is likely
that Chromium’s stream-processing model can be applied to other
problems in visualization and computer illustration.

References

Advanced Graphics Progumming Techniques Using OpenGL.
SIGGRAPH 1998 Course Notes.
Shivnath Babu and Jennifer Widom. Continuous queries over
data streams. SIGMOD Record, pages 109-120, September
2001.
Ian Buck, Greg Humphreys, and Pat Hanrahan. Track-
ing graphics state for networked rendering. Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Haidware,
pages 87-95, August 2000.
Comna Cortes, Kathleen Fisher, Daryl Pregibon, Anne
Rodgers, and Frederick Smith. Hancock A language for ex-
tracting signatures from data streams. Proceedings of 2000
ACM SIGKDD International Conference on Knowledge and
Data Mining, pages 9-17.
Thomas Funkhouser. Coarsc-grained parallelism for hierar-
chical radiosity using group iterative methods. Proceedings
of SIGGRAPH96, pages 343-352, August 1996.
Christopher Giertsen and Johnny Peterson. Parallel volume
rendering on a network of Workstations. ZEEE Computer
Graphics and Applications, pages 16-23, November 1993.

[7] Greg Humphreys, Ian Buck, Matthew Eldridge, and Pat Han-
rahan. Distributed rendering for scalable displays. IEEE Su-
percomputing 2000, October 2000.

[SI Greg Humphreys, Matthew Eldridge, Ian Buck, Gordon Stoll,
Matthew Everett, and Pat Hanrahan. WireGL A scalable
graphics system for clusters. proceedings of SIGGRAPH
2001, pages 129-140, August 2001.

[9] Greg Humphreys and Pat Hanrahan. A distributed graphics
system for large tiled displays. IEEE Ir,ualization ’99, pages
215-224, October 1999.

[lo] Homan Igehy, Gordon Stoll, and Pat Hanrahan. The design of
a parallel graphics interface. Proceedings of SIGGRAPH 98,
pages 141-150, July 1998.

[ll] G. Allan Johnson, Gary Cofer, Sally Gewalt, and Lau-
rence Hedlund. Rapid phenotyping with MR his-
tology. poster session of the 5th international confer-
ence on magnetic resonance microscopy, September 1999.
http~/~civm.mc.dukc.edu/mdiology/supp 1htmYp.html.

[121 Kwan-Liu Ma, James Painter, Charles Hansen, and Michael
Krogh. Parallel volume rendering using binary-swap image
compositing. IEEE Computer Graphics and Applications,
pages 59-68, July 1994.

[13] William Mark and Kekoa Proudfoot. The F-buffer: A ras-
terization order FIFO buffer for multi-pass rendering. Pro-
ceedings of SIGGRAPH/Eurographics Workhop on Graphics
Hardware, pages 57-64, August 2001.

[14] Lee Markosian, Michael Kowalski, Samuel Trychin, Lubomir
Bourdev, Daniel Goldstein, and John Hughes. Real-time non-
photorealistic rendering. Proceedings of SIGGRAPH 1997,
pages 415420.

Non-invasive, interac-
tive, stylized rendering. ACM Symposium on Interactive 3 0
Graphics, pages 175-178, March 2001.

[16] Steve Molnar, Michael Cox, David Ellsworth, and Henry
Fuchs. A sorting classification of parallel rendering. IEEE
Computer Graphics and Algorithms, pages 23-32, July 1994.

[17] Liadan O’Callaghan, Nina Mishra, Adam Meyerson, Sudipto
Guha, and Rajeev Motwani. Streaming-data algorithms for
high-quality clustering. To appear in Proceedings of IEEE
International Conference on Data Engineering, March 2002.

[18] John Owens, William Dally, Ujval Kapasi, Scott h e r , Pe-
ter Mattson, and Ben Mowery. Polygon rendering on a stream
architecture. Proceedings of SIGGRAPH/Eurographics Work-
shop on Graphics Hardware, pages 23-32, August 2000.

[19] Mark Peercy, Marc Olano, John Airey, and Jeffrey Ungar. In-
teractive multi-pass programmable shading. Proceedings of
SIGGRAPH 2000, pages 425-432, August 2000.

[20] Kenneth Penine and Donald Jones. Parallel graphics and in-
teractivity with the scaleable graphics engine. IEEE Super-
computing 2001, November 2001.

[2 11 Pixar animation studios. PhotoRealistic RenderMan Toolkit.
1998.

[22] Thomas Porter and Tom Duff. Compositing digital images.
Proceedings of SIGGRAPH 84, pages 253-259, July 1984.

[23] Kekoa Proudfoot, William Mark, Svetoslav Tzvetkov, and Pat
Hanrahan. A real time procedural shading system for pro-
grammable graphics hardware. Proceedings of SZGGRAPH
2001, pages 159-170, August 2001.

[24] Ramesh Raskar. Hardware support for non-photorealistic ren-
dering. Proceedings of SIGGRAPH/Eurographics Workshop
on Graphics Hardware, pages 4146, August 2001.

[25] Ramesh Raskar and Michael Cohen. Image precision silhou-
ette edges. ACM Symposium on Interactive 3 0 Graphics,
pages 135-140, April 1999.

[151 Alex Mohr and Michael Gleicher.

11

Paper #60 - Chromium: A S h a m Processing Framework for Interactive Rendering on Clusters

[26] Rodney Reckcr, David George, and Donald Greenberg. Ac-
celeration techniques for progressive refinement radiosity.
ACM Symposium on Interactive 3 0 Graphics, pages 59-66,
1990.

[27] Jareck Rossignac and Maarten van Emmerik. Hid-
den contours on a fiamebuffer. Proceedings of
SIGGRAPH/Eumgraphics Workshop on Graphics Had-
ware, September 1992.

[28] Szymon Rusinkiewicz and Marc Levoy. Streaming QSplat:
A viewer for networked visualization of large, dense models.
ACM Symposium on Interactive 3 0 Graphics, pages 63-68,
2001.

[29] Rudrajit Samanta, Thomas Funkhouser, and Kai Li. Paral-
lel rendering with k-way replication. IEEE Symposium on
Parallel and Large-Data Ksualization and Graphics, October
2001.

[30] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and
Jaswinder Pal Singh. Sort-first parallel rendering with a clus-
ter of PCs. SIGGRAPH 2000 Technical Sketch, August 2000.

[31] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and
Jaswinder Pal Singh. Hybrid sort-first and sort-last par-
allel rendering with a cluster of PCs. Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Hadware,

[32] Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser,
Kai Li, and Jaswinder Pal Singh. Load balancing
for multi-projector rendering systems. Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 107-116, August 1999.

[33] Gordon Stoll, Matthew Eldridge, Dan Patterson, Art Webb,
Steven Berman, Richard Levy, Chris Caywood, Milton
Taveira, Stephen Hunt, and Pat Hanrahan. Lightning-2: A
high-performance display subsystem for PC clusters. Pro-
ceedings of SIGGRAPH2001, pages 141-148, August 2001.

[34] Douglas Voorhies, David Kirk, and Olin Lathrop. Virtual
graphics. Proceedings of SIGGRAPH 88, pages 247-253, Au-
gust 1988.

pages 97-108, August 2000.

12

Chromium: A Stream-Processing Framework for Interactive Rendering on Clusters

Greg Humphreys* Mike Houston* Yi-Ren Ng* Randall Frankt Sean Ahernt Peter D. Kirchnert
James T. Klosowskit

*Stanford University
t Lawrence Livermore National Laboratory

XIBM T.J. Watson Research Center

Category: System (Paper ID: 60)
Format:

Contact: Greg Humphreys
Gates Computer Science Building Room 381
353 Serra Mall
Stanford, CA, 94305

phone: (650) 723-0618

email: humper@graphics.stanford.edu
fax: (650) 723-0033

Estimated # of pages: 12

Keywords: Scalable Rendering, Cluster Rendering, Parallel Rendering, Tiled Displays, Remote Graphics, V i 1 Graphics, Stream
Processing

We describe Chromium, a system for manipulating streams of graphics API commands on clusters
of workstations. Chromium’s stream filters can be arranged to create sort-first and sort-last parallel
graphics architectures that, in many cases, support the same applications while using only commodity
graphics accelerators. In addition, these stream filters can be extended programmatically, allowing
the user to customize the stream transformations performed by nodes in a cluster. Because our stream
processing mechanism is completely general, any cluster-parallel rendering algorithm can be either
implemented on top of or embedded in Chromium. In this paper, we give examples of real-world
applications that use Chromium to achieve good scalability on clusters of workstations, and describe
other potential uses of this stream processing technology. By completely abstracting the underlying
graphics architecture, network topology, and API command processing semantics, we allow a variety
of applications to run in different environments.

mailto:humper@graphics.stanford.edu

